

Bachelor of Biosystems Technology Faculty of Technology South Eastern University of Sri Lanka

BSE 11042 Principles of Irrigation

Drip Irrigation

- Water is applied at A point or Over a very limited fraction of total surface area
- Water is applied In the vicinity of root zone Wetting a limited area of surface and depth
- ➤ A balance between crop evapotranspiration and applied water is maintained over a limited period of time (24 72 h)
- Amount of soil wetted depends on soil characteristics, length of irrigation period, emitter discharge, number and spacing of emitters.
- Number and spacing of emitters are dependent on the spacing and size of plants being irrigated.
- ➤ Water supply is inadequate and water cost is high, subsurface micro systems cost effective for irrigation of high value row crops.

System components

Mainline

Pump

Chemical injector - to inject fertilizer/chemicals Primary filter – screen large particles Pressure gauges on either side of filter – evaluate pressure drop across filter Discharge control valves and flow meters

Submain

Secondary filters – remove finer particles Solenoid valves – automate the system Pressure regulators –system operating pressure Secondary pressure gauges – verify operating pressure

Flush valves – flush out system

Laterals

Emission devices

Types of emitters

Point source emitters

a) Online

More headloss due to barbs Can be replaced easily Microtubes - Discharge rates adjusted by varying length of tubing.

b) Inline

Entire flow required downstream of emitter passes through Necessary to shutoff flow and cut the pipe to replace malfunctioning one

Line source emitters

Porous pipes or tapes Perforated pipes

> Discharge water along the entire length of pipe Made out of polymer compounds with small pores Water seeps out of the pipe drop by drop

Mono walled

Bi walled

Several exit orifices in the wall of secondary chamber for each single orifice in the primary chamber

Figure Components of a micro irrigation system

Advantages of drip irrigation:

- Maintains constant soil moisture \geq
- ≻ Minimize wastage of irrigation water through over irrigation and direct evaporation
- Minimize energy usage
- Provide adequate water in the root zone and not in the region where no roots exist
- \triangleright Is suitable for small trees and widely spaced plants
- \triangleright Suitable for arid regions
- \triangleright Minimize the wetting of soil surface to reduce insect, disease and fungus problems, weeds
- \geq Minimize the disturbance to soil
- ≻ Apply on steeper slopes
- \triangleright Deliver fertilizers or pesticides
- Highest efficiency
- Eliminate land leveling
- No surface flow so that no tail-water runoff, erosion
- Can use poor quality water as water content in root zone is always close to saturation
- **A A A A A A A** Increased yields
- Increased cropping intensity
- Deep percolation can be controlled with good water management
- \triangleright Systems easily automated with soil moisture sensors and computer controlled for low labor
- Soil moisture levels can be maintained at predetermined levels for start-stop \geq operations
- Less opportunity for ground water pollution. ≻
- \triangleright The soil surface remains firm for use by farm workers and equipment.
- \triangleright Can be used on all terrain and most agricultural crops
- \triangleright Yield per unit volume of water and unit land area is high

Disadvantages of drip irrigation:

- Relatively higher initial cost \geq
- \triangleright Good maintenance is required
- ≻ Clogging of emitter by soil particles (sand/clay), debris, precipitates, organic matter
- \triangleright Dissolved salt deposited in the soil surface
- \triangleright A bad design - limit the growth of roots within a narrow region
- Animals, especially rodents, can damage surface (and shallow subsurface) installed \triangleright plastic pipe less than 4 inches in diameter
- \triangleright With low operating pressures, poor distribution uniformity can result because of elevation differences on undulating ground
- Need highest technology and equipment \geq
- Poor root development \triangleright

Figure Different types of Drippers (Source: Netafim)